AIST researchers have confirmed the operation of an ultra-miniaturized transistor with a channel length of 3 nm. The developed transistor was fabricated employing a V-shaped groove created by anisotropic dissolution of silicon crystal in an alkaline solution. By controlling the conditions of dissolution, a groove with a sharp tip measures 3 nm was prepared and the groove tip was used as the channel. Junctions were formed by a new technique whereby impurities are uniformly distributed on the entire silicon crystal. In terms of electrical characteristics, the current-regulating performance was maximized when the thickness of the channel (whose length is 3 nm) was thinned down to 1 nm. The velocity of electrons in the transistor was also investigated; it was verified that scattering effects are repressed inside the 3 nm-long channel, resulting in a quasi-ballistic flow of electrons. This suggests that an electric current can flow without energy loss. Consequently, reduction in power consumption of integrated circuits is expected.
↧